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Compartmental Analysis in Photophysics: Fluorescence Decay Kinetics and Identifiability
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The triple-exponential fluorescenderesponse function is derived for the photophysical model of successive
complexation between ligand and analyte. Initially, a complex with 1:1 stoichiometry between ligand and
analyte is formed. Further binding leads to a complex with two analyte molecules per ligand molecule. We
show that this model is uniquely identifiable. This means that all deactivation and exchange rate constants in
the excited state and all spectral parameters associated with photoexcitation and fluorescence emission can
be uniquely determined. The issues of controllability and observability are discussed for this photophysical
system. The conditions, under which a non-controllable or non-observable system is obtained, are described.

1. Introduction data. This is the subject of the deterministic identifiability (or
identification) analysis. Such an analysis tells one which

Time-resolved fluorescence is an essential SpectroscopiCintormation is theoretically accessible from the fluorescence
technique for studying the dynamics of excited-state Processesygcay surface.

Since the relaxation of excited states often can be described by |, ihis report, we investigate the photophysical model for

a set of coupled, Iinear differer)tial equations, excited-state ¢,ccessive association between ligand and analyte M (or co-
systems are formally equivalent with compartmental systefhs.  yoactant M). Compartmental modeling is ideally suited for
Although compartmental modeling is extensively used in gegcribing the excited-state dynamics and for analyzing the
pharmacokinetics, ecology, engineering, and chemical reactionyeerministic identification of this kinetic photophysical model.

kinetics (see, e.g., refs-B), its use in photophysics (energy The paper is organized as follows. In section 2, we give a

transfer kinetics, fluorescence decay analysis, complex associagompartmental description of the time-resolved fluorescence of

tion/dissociation, excited-state quenching, etc.) is rather limited. {ne model of successive association. In section 3. we use

Overall, relatively little has appeared on the use of compart- gimijarity transformation as an identifiability analysis method
mental analys.ls of excned-statg processes, probably because of, verify which model parameters can be uniquely recovered
the lack of first-class, user-friendly, global compartmental o error-free observations. For the model discussed here, the
software for analyzing time-resolved fluorescence data. Since narameters that have to be identified are excited-state deactiva-
the first identification analysis of an intermolecular two-state iqn/exchange rate constants and spectral factors associated with
excited-state processdentifiability studies of compartmental  pnatoexcitation and fluorescence emission. In section 4, we
models of intermolecular as well as intramolecular two-state yiscyss the properties of controllability and observability for
and three-state excited-state processes have been reported (S@& investigated system. It is shown that zero values for exchange
ref 5 for literature data up to 2000). Lately, we have reported rate5 and spectral parameters linked to excitation and emission

identifiability analyses of a model for diffusion-mediated |4 to non-controllable or non-observable systems, respectively.
intramolecular excited-state quencHingnd of a model for

intermolecular excited-state proton exchange reaction in the 2. Compartmental Analysis Description of Fluorescence
presence of pH buffer.Furthermore, the identifications of Decay Kinetics

models for rotational diffusion monitored by time-resolved
fluorescence depolarizati$ri? and for fluorescence quenching

in aqueous micellar systeAid* have been investigated. A

review on compartmental modeling and identifiability analysis

in photophysics has been published recefitly. depicted in Scheme 1. Ground-state spediesan undergo a

Once a particular photophysical model is proposed for o ersiple association reaction with co-reactant (or analyte) M
describing the excited-state dynamics, the first step in compart- ¢orm ground-state speci@swhich can associate further with

mental analysis should be the derivation of the mathematical \; 4 form ground-state specied Scheme 1 represents the
expression of the fluorescence decay. Next, one should inves- il associatierdissociation betweet and co-reactant
tigate if the underlying parameters defining the model can be \; \yith a4 1:1 stoichiometry leading t@ and the successive
determined unambiguously from error-free fluorescence decay ;o ciation with 1:2 stoichiometry betweeand M leading to

3. Itis further understood that only specigs2, and3 absorb

* Corresponding author. E-mail: Noel.Boens@chem.kuleuven.be. | ot ex [P ex
Phone: +32-16-327497. Fax-+32-16-327990. light at the excitation wavelength . Phot(:exutation at,
T Katholieke Universiteit Leuven. creates, in principle, the excited speciés 2*, and 3*, which

* Institut Curie. can decay by fluorescence (F) and nonradiative (NR) processes.

Consider a linear, time-invariant, dynamic, intermolecular
photophysical system, consisting of three distinct types of
ground-state species (labeléd?, and3) and three correspond-
ing excited species (labelet¥, 2*, and 3*, in that order) as
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SCHEME 1: Schematic Representation of the Kinetic
Model for Successive, Reversible, Intermolecular
Association between Ligand and Analyte M: Species 1
Forms with Co-reactant M the 1:1 Complex 2 and
Subsequently the 1:2 Complex 3; Photoexcitation
(symbolized byhv) Leads to the Excited Species 1*, 2*,
and 3*

kZl [M] kSZ[M]
1* 2" 3"
klZ k23
v | kg v | kg, hv| | ko
M] M]
1 2 3

The composite rate constant for these processes is representegl_

by kom (= ki + knri) for speciesm in the excited state. The
excited-state association reactiondfwith co-reactant M is
described by rate constakii, while ki, stands for the rate
constant of dissociation @ into 1* and M. The further excited-
state association &* with M to form 3* is described by rate
constanksy, Whereaskys denotes the rate constant of dissociation
of 3* into 2* and M.

If the system shown in Scheme 1 is photoexcited (symbolized
by hv) by a ¢ pulse which does not significantly alter the
concentrations of the ground-state species (i.e., in the low
excitation limit), the fluorescenagresponse functiorf(t, [M]),
at co-reactant concentration [M] and at emission wavelength
4™ due to excitation at{™ is given by*®

it M) =g e”b(M)  t=0" (1)

It is assumed that the concentration [M] of the co-reactant is
experimentally known. The & 3 matrixA can be represented
in terms of its elements:

A= () (2a)
with amn given by

a;; = —(Ky + Ky[M]) @, =k, a3=0

Ay = Kyy[M] &y, = —(Kgp + Ko + Kg[M]) 8,3 =Ky3  (2b)

A3 =0 a5 =Kkg[M] ag3=—(ky3+ Ky

It is assumed that all rate constakgs, andkn, are positive,
leading to negative diagonal and nonnegative off-diagonal
elements ofA.

bi([M]) is the 3 x 1 vector with elementby = [M*] =0+ (M
= 1-3), symbolizing the time-zero concentrationrafin the
excited state due to excitation 4t:

bi((M]) = (by, by, by)" 3)

whereT indicates transpose.
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¢ is the 1x 3 vector with elementsy,; (m = 1-3):

Cj = (Cljv C2J1 C3J) (4a)
The emission weighting factam,; is defined by®
Cry = ke [ gom A A2°T (4b)

whereken, is the fluorescence rate constant of speaidsa the
excited state anzk/lfm is the wavelength interval for monitor-
ing the fluorescence signal arourd”. pm(2°™ denotes the
spectral density of the emission due to speaigs the excited
state atxlfm, normalized to its complete steady-state fluores-
cence spectrurf, and is defined by

p(iem) = F/ﬁullemission bandF diem

The triple @, by, ) is called a realization of the fluorescence
response functiofy(t). Equation 1 represenfg(t) in terms

of the realization4, bj, ¢) and shows that the impulse response
function f;(t) is composed of three separate contributions:
photoexcitation (throughy), fluorescence emission (throug,

and deactivation and redistribution of the excited species
(throughA).

The explicit expression ofj(t) (eq 1) is triple-exponential:

(%)

3

f.(t) = e t>0" 6
i kZOLk (6)

The eigenvaluegy (k = 1—3) of the compartmental matrix
A are given by

6u_ Jy M
y— A AV
2 I+ iv3) 12 3
with
u=-3 (h2 +3 hf) (8a)

1 = 36h;h, + 108, + 8h3 +
12,/ 123 — 3022 + 5dh;hyh, + 8112 + 12h%h, (8b)

and
hy =ay; + ay, + ag; (8c)
h, = —ay;8y; — 85,853 — 81833 1 818; T 858, (8d)
hy = @y18,833 — 81581833 ~ 8118383, (8e)

wherean, are the elements &.
The pre-exponential factors (k = 1—3) are given by:

3
o = (Cofi T Syt CBg)l H k= Ym) )
ek

with
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q N _T1
Byc= —(ag3 — Vk)[blqlk + alz(bz — b, a_gj] (10a) A_ ToAT (122)
° b=T'h (12b)
Ba= —(ag3— yid(@y — Vk)[ by % — b, +b; q_3k (10b) ¢=qgT (12¢)

whereT is a constant, invertible (or nonsingular) matrix (i.e.,

Ba=—(@4;— 7 asz( A Tk b) b3q3k] (10c) detT = 0) having the same dimension (i.e., 3) as ma#ix

tll t12 t13
and T=|t tp ty (13)
t3l t32 t33

= |_|I(ann —vml(ay; — ag9) n=1,3 (10d) The set of eqs 12 should be satisfied for each experimental
m= conditior? (differentZ”, AA’™", and analyte concentration [M]).
Therefore,T should be independent af*, A, and [M].
Performing the matrix multiplications in eq 12a leads to the

Although the imaginary unit = v—1 is explicitly present
g ginery PHCIY B following nine parts of eq 14:

in the expressions of the eigenvalugsand ys (eq 7b), we
note that these eigenvalues are real. The imaginaryiusit — - -
needed to cancel the imaginary component of the varigble t11(Koy = Koo) + taikyp = [MI[ta(Kyy — ko) + 1Ky (144)
(eq 8b). The eigenvalueg are calculated as roots of the

characteristic (cubic) equation of the matixand are real.  t,k;, + tlz(Roz—l—Elz Kop) — t11 12 =
Indeed, complex eigenvalues are only possible if there are three = =
or more compartments in a cyélén the current model, this [MI(tikos + tigksz — tiksg) (14D)
means that there also would be a connection betwi®#eand _ _
3%), which is not the case here. oz + tyakos + Kog = Kop) — tigkog = [MItydkyy  (140)
3. Identifiability via Similarity Transformation taiKos + tyr(Key — Kop — Kip) =

In the deterministic identifiability analysis, one examines as M][ t Koo — t Ko 4t (k —k )] (14d)

22721 11721 21\"32 2

to whether or not the parameters of a given model are uniquely
defined under error-free observations, given that the model is — —
completely specified-3 Therefore, the identification study of  taKog T (Koo + Ko = Koo = Kip) — tyiky, =
a specific model for excited-state processes investigates if it is T Lk
possible to find alternative realizations of the fluorescence Ml tadksz =t + toolksp = ksp)] (14€)
o-response functiofy(t), say @, bi, Tj), in addition to the true — -
realization 4, by, ¢)) that satisfy eq 11. tackos F toalKog + Kog = Kop = Kio) — tyoys =
o [M](takaz — tigkoy) (141)
fit, A, by, ¢) =f;(t, A, b;, ) (11) _ B ~
ta1(Kor — Koz = Kpd) = [M](t5 ko1 — tyikoy — thiKsp) (140)
In other words, the fluorescenéeresponse function should be

the same for the trueA( b;, ¢;) and the aIternatlveA( bi, G) —to Koo 4tk + Koo — — k) =
model parameter sets. The realizatioAslf;, ¢) and @, b, ) a1k F laalkop T kiz = Kog 2_3) _
are said to be similar, that is, they are related via similarity [M](tgaksp — taKsp — tKs,) (14h)

transformation (see further).

There are three possible outcomes to the identifiability t32 - tss(k03+ k23 Koz — Kyg) = [M]tyks, (14i)
analysis. (1) A model is uniquely (or globally) identifiable if
the parameters of the assumed model can be uniquely deter- Because the set of eqs 14 must be valid for all values
mined from the idealized experiment. In that case, a single set(including zero) of [M], their right-hand sides should be equal

of model parameters is obtaine& = A, b; = b;, andg; = ;. to zero. From eq 14c (witky; = 0), it follows then that;s =
(2) If there is a finite number of alternative parameter estimates 0. Analogously, from eq 14i (witts, = 0), we havetys = 0,

for some or all of the model parameters that fit the data, the and hence, from eq 14c, it follows that, = 0. Now, eq
model is locally identifiable: there is a limited set of alternative 144 b e f,i reduces to eq 15a,b,c,d,e, respectively. Equation 14c
A, bi, andg;. (3) An unidentifiable model is found when there  does not contain any information anymore, whereas eq 14d,g,h

is an infinite number of alternativa, b;, andg. remain unchanged.
Here, we choose the similarity transformation appréééh?®
for carrying out the identification analysis because it offers an t11(E01 — Kyy) F tyikip = [M]ty,(Kyy — 21) (15a)
excellent method of constructing another (i.e., alternative)
realization @, b;, G) of f;(t) and of determining if the model is tyoKyp — t11R12 =0 (15b)

uniquely or locally identifiable or not identifiable at all. An extra

bonus of the similarity transformation approach is that the ¢ j .+t (k,, + k
relationships between the true and the alternative model eres e k02 ~hoe k) = _
parameters are explicitly provided. [M] tpo(ks, — kap) (15€)

The realizationsA, bi, ¢) and @, b;, ©) are related as in eq —
12121718 " " takos — k3 =0 (15d)

t21 12 =
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taokog — taa(kog T Koz — Koz = Kpg) = 0

Elementt;; cannot be zero, because andt;; are already
zero. Ift;; = 0, then the first row ofl is zero leading to def
= 0. Similarly, the conditions;, = 0 ortzz = 0 also lead (via
eq 15b,d withkyz; = 0 andkyz = 0) to a singular matrixT,
which is not a valid transformation matrix. Hence, all of the
diagonal elements of must be different from zerot;; = 0,
too = 0, andtzz = 0. B

Equation 15a foit;; = 0 producesky; = kz1. Analogously,
eq 15c forty, = 0 yieldsksz = kaa.

From eq 149, we haviy; = 0. Equation 14h withz; = 0
leads totsp = 0, tasks2 = taoksz, and hencezz = tas. Now eq
15d gi\_/eSk23 = k23. Equation 15e Withﬁ32 =0 and k23 = k23
yields koz = koz. Equation 14d withtz; = O leads totp; = O,
tokor = t1iker, and hencey; = to. Equation 15a giveko, =
ko1 and eq 15b yield&;> = ki2. Finally, from eq 15c follows
that koz = koz.

(15e)

To summarize: the photophysical system depicted in Scheme

1 is uniquely identifiable in terms of the rate constarftks, =
Ko1, Koz = Koz, Koz = Koz, K12 = K12, kog = Koz, ko1 = ko1, andkss
= ksgz} with T = t31l3, wherel; stands for the unit matrix of
order three. Now the alternatiy® andg; can be calculated from
eq 12b,c, respectively, with = ti;l3, It is straightforward to
show that

o

o

(16a)

U
13

(16b)

Ineq 16a,b; is the 3x 1 vector containing the normalized
true by (m = 1—-3) defined by

3
bmi = bm/”; bmi

t:)i is the 3x 1 vector with the normalized alternati*zen (m
=1-3):

(17a)

= — 3 —
I:)mi = bmi/n;bmi (17b)

Analogously, in eq 16b%; anda- represent the k 3 vectors
with the normalized tru€y; and alternativec,,; (m = 1—3),

respectively:
3
Conj = Conf Z Crnj
=

_ 3
Conj = Conf Z Cinj
m=

To conclude, the photophysical system with successive
complexation as shown in Scheme 1 is uniquely identifiable in
terms of the rate constants of de-activation and exchange in

(18a)

(18b)

the excited state and the normalized spectral factors related to

excitation ;) and emissiond).

4. Controllability and Observability

Itis known that the identifiability analysis based on similarity
transformation (section 3) leads to reliable conclusions only for
controllable and observable systetfg?

Boens and Novikov

The time-invariant system described by eq 1 is controllable
if and only if the 3x 3 controllability matrixR(A, b;) of A
andb;, 221 defined in eq 19, is of full rank 3 (requiring that det
R(A, b)) = 0).
R(A, b)) = (b, Ab;, A%b,) (19)
The controllability matrixR = R(A, b;) can be represented
in terms of its elements:

R=
by byay, + bya, by(ay,” + a8, +

bya (a1, + @) + byaya,;
byay; + byas, + byays byas(ag; + ay,) +

bji(ay85, + a222 + 3y383,) +
byays(az, + a9

Dyi@y185, + byagy(ay, t agg) +

b3i(a58, + a332)

b2i

by byag, + byag,

2b)

whereamp are the elements of matri (eq 2) andoy, are the
elements of vectob; (eq 3). To determine the rank of matrix
R, we calculate its determinant:

detR = ay,’ag;° — [(dyy + dyg)aghy + (P, — 2P —
Aho0r9)bz180105° — [(Prz + Pos — Oy 3505° —
(dy 5Py, + dy3Pp3 — A0 50hg) D50, + (2P, — Pps +
Ay o0 ) anehs 10y + [AygBoy° + (Prp + Pog —
Oyg0r9)b5° = (s + dho)ad,by® — a57b5%ay, (214)

with

O, = a1y — 8y U3 = 3y — g5, Opg = 8pp — 333, P12 =
A1721, Po3 = Bad; (21D)

The photophysical system studied is controllable if renk 3
and, hence, if deR = 0. Conversely, if detR = 0, the
photophysical system is non-controllable.

The criterion for observability in terms of the matrices of
the system is analogous to that of controllability. The same
photophysical system is observable if and only if thex 3
observability matrixO(A, ¢) of A andc;,>2* defined in eq 22,
is of full rank 3 (requiring that de©(A, ¢) = 0).

G

GA®

(22)

The observability matriXd = O(A, ¢) can be written in terms
of its elements:

O

Cy

i Cydys T Cyay;

Clj(allz + a8y +

Cyjdpq(ayg + 8pp) + Cy80183,
Cyjayp(ayq T @) + Cyl@r8 +
azz2 + 8y3837) T Cyag(a, + asd
Cjdy 83 T Coyog(@py T ag9) +
Cy(@pPaz T 833)

Cyi

j Cydlyp T Cy8 T Cyag;

Cy Cyluzt Cyags

(28

with ¢y defined in eq 4. The determinant of matiixis



Compartmental Analysis in Photophysics

detO = 3-122"7‘23011'3 = [(dyp + diayCy + (P1o — 2Py —
d13d23)03j]a1201j2 —[(Pr2t+ Pos — d12d13)3230212 = (dipyp +
Ogpg — Oy 0130,9)C5Ch + (2P, — Poz t
d12d13)a3203j2] Cy T [dl3a2302j3 + (P12t Pz —
d13d23)C3jC2j2 — (dig+ dzs)aszczjcsjz - a32203j3]a21 (24)

with dlg, d13, d23, P12, and P23 given by eq 21b.

The photophysical system is observable if rdhk= 3 and,
hence, if deD = 0. Conversely, if deD = 0, the photophysical
system is non-observable.

Note that detO (eq 24) is “symmetrical” compared with
detR (eq 21): one has to substitute &llfor ¢; and invert all
indices fora (i.e., ann becomes,). Hence, the conditions for
non-observability are symmetrical with those for non-con-
trollability (switch the indicesn andn in amn, and substitutd;
for g.).

In this paper, it is not our aim to give a detailed analysis of
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anticipated for the controllable and observable system under
investigation.
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